249 research outputs found

    Expectancy changes the self-monitoring of voice identity

    Get PDF
    Self‐voice attribution can become difficult when voice characteristics are ambiguous, but functional magnetic resonance imaging (fMRI) investigations of such ambiguity are sparse. We utilized voice‐morphing (self‐other) to manipulate (un‐)certainty in self‐voice attribution in a button‐press paradigm. This allowed investigating how levels of self‐voice certainty alter brain activation in brain regions monitoring voice identity and unexpected changes in voice playback quality. FMRI results confirmed a self‐voice suppression effect in the right anterior superior temporal gyrus (aSTG) when self‐voice attribution was unambiguous. Although the right inferior frontal gyrus (IFG) was more active during a self‐generated compared to a passively‐heard voice, the putative role of this region in detecting unexpected self‐voice changes during action was demonstrated only when hearing the voice of another speaker and not when attribution was uncertain. Further research on the link between right aSTG and IFG is required and may establish a threshold monitoring voice identity in action. The current results have implications for a better understanding of the altered experience of self‐voice feedback in auditory verbal hallucinations

    Demonstration and validation of Kernel Density Estimation for spatial meta-analyses in cognitive neuroscience using simulated data

    Get PDF
    The data presented in this article are related to the research article entitled “Convergence of semantics and emotional expression within the IFG pars orbitalis” (Belyk et al., 2017) [1]. The research article reports a spatial meta-analysis of brain imaging experiments on the perception of semantic compared to emotional communicative signals in humans. This Data in Brief article demonstrates and validates the use of Kernel Density Estimation (KDE) as a novel statistical approach to neuroimaging data. First, we performed a side-by-side comparison of KDE with a previously published meta-analysis that applied activation likelihood estimation, which is the predominant approach to meta-analyses in cognitive neuroscience. Second, we analyzed data simulated with known spatial properties to test the sensitivity of KDE to varying degrees of spatial separation. KDE successfully detected true spatial differences in simulated data and displayed few false positives when no true differences were present. R code to simulate and analyze these data is made publicly available to facilitate the further evaluation of KDE for neuroimaging data and its dissemination to cognitive neuroscientists

    Human larynx motor cortices coordinate respiration for vocal-motor control.

    Get PDF
    Vocal flexibility is a hallmark of the human species, most particularly the capacity to speak and sing. This ability is supported in part by the evolution of a direct neural pathway linking the motor cortex to the brainstem nucleus that controls the larynx the primary sound source for communication. Early brain imaging studies demonstrated that larynx motor cortex at the dorsal end of the orofacial division of motor cortex (dLMC) integrated laryngeal and respiratory control, thereby coordinating two major muscular systems that are necessary for vocalization. Neurosurgical studies have since demonstrated the existence of a second larynx motor area at the ventral extent of the orofacial motor division (vLMC) of motor cortex. The vLMC has been presumed to be less relevant to speech motor control, but its functional role remains unknown. We employed a novel ultra-high field (7T) magnetic resonance imaging paradigm that combined singing and whistling simple melodies to localise the larynx motor cortices and test their involvement in respiratory motor control. Surprisingly, whistling activated both 'larynx areas' more strongly than singing despite the reduced involvement of the larynx during whistling. We provide further evidence for the existence of two larynx motor areas in the human brain, and the first evidence that laryngeal-respiratory integration is a shared property of both larynx motor areas. We outline explicit predictions about the descending motor pathways that give these cortical areas access to both the laryngeal and respiratory systems and discuss the implications for the evolution of speech

    Emotional Speech Perception Unfolding in Time: The Role of the Basal Ganglia

    Get PDF
    The basal ganglia (BG) have repeatedly been linked to emotional speech processing in studies involving patients with neurodegenerative and structural changes of the BG. However, the majority of previous studies did not consider that (i) emotional speech processing entails multiple processing steps, and the possibility that (ii) the BG may engage in one rather than the other of these processing steps. In the present study we investigate three different stages of emotional speech processing (emotional salience detection, meaning-related processing, and identification) in the same patient group to verify whether lesions to the BG affect these stages in a qualitatively different manner. Specifically, we explore early implicit emotional speech processing (probe verification) in an ERP experiment followed by an explicit behavioral emotional recognition task. In both experiments, participants listened to emotional sentences expressing one of four emotions (anger, fear, disgust, happiness) or neutral sentences. In line with previous evidence patients and healthy controls show differentiation of emotional and neutral sentences in the P200 component (emotional salience detection) and a following negative-going brain wave (meaning-related processing). However, the behavioral recognition (identification stage) of emotional sentences was impaired in BG patients, but not in healthy controls. The current data provide further support that the BG are involved in late, explicit rather than early emotional speech processing stages

    The role of the cerebellum in adaptation: ALE meta-analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self-action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine-grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task-based human neuroimaging studies that experimentally alter the quality of self-generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta-analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies

    Dynamics on expanding spaces: modeling the emergence of novelties

    Full text link
    Novelties are part of our daily lives. We constantly adopt new technologies, conceive new ideas, meet new people, experiment with new situations. Occasionally, we as individuals, in a complicated cognitive and sometimes fortuitous process, come up with something that is not only new to us, but to our entire society so that what is a personal novelty can turn into an innovation at a global level. Innovations occur throughout social, biological and technological systems and, though we perceive them as a very natural ingredient of our human experience, little is known about the processes determining their emergence. Still the statistical occurrence of innovations shows striking regularities that represent a starting point to get a deeper insight in the whole phenomenology. This paper represents a small step in that direction, focusing on reviewing the scientific attempts to effectively model the emergence of the new and its regularities, with an emphasis on more recent contributions: from the plain Simon's model tracing back to the 1950s, to the newest model of Polya's urn with triggering of one novelty by another. What seems to be key in the successful modelling schemes proposed so far is the idea of looking at evolution as a path in a complex space, physical, conceptual, biological, technological, whose structure and topology get continuously reshaped and expanded by the occurrence of the new. Mathematically it is very interesting to look at the consequences of the interplay between the "actual" and the "possible" and this is the aim of this short review.Comment: 25 pages, 10 figure

    A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of high throughput biotechnology data acquisition platforms such as micro arrays, SNP chips and mass spectrometers, data sets with many more variables than observations are now routinely being collected. Finding relationships between response variables of interest and variables in such data sets is an important problem akin to finding needles in a haystack. Whilst methods for a number of response types have been developed a general approach has been lacking.</p> <p>Results</p> <p>The major contribution of this paper is to present a unified methodology which allows many common (statistical) response models to be fitted to such data sets. The class of models includes virtually any model with a linear predictor in it, for example (but not limited to), multiclass logistic regression (classification), generalised linear models (regression) and survival models. A fast algorithm for finding sparse well fitting models is presented. The ideas are illustrated on real data sets with numbers of variables ranging from thousands to millions. R code implementing the ideas is available for download.</p> <p>Conclusion</p> <p>The method described in this paper enables existing work on response models when there are less variables than observations to be leveraged to the situation when there are many more variables than observations. It is a powerful approach to finding parsimonious models for such datasets. The method is capable of handling problems with millions of variables and a large variety of response types within the one framework. The method compares favourably to existing methods such as support vector machines and random forests, but has the advantage of not requiring separate variable selection steps. It is also works for data types which these methods were not designed to handle. The method usually produces very sparse models which make biological interpretation simpler and more focused.</p

    Factors associated with self-assessed increase in tobacco consumption among over-indebted individuals in Germany: a cross-sectional study

    Get PDF
    Background Over-indebtedness is an increasing phenomenon in industrialised nations causing individual hardship and societal problems. Nonetheless, few studies have explored smoking among over-indebted individuals. Methods A cross-sectional survey (n=949) on retrospectively assessed changes in tobacco consumption was carried out in 2006 and 2007 among clients of 84 officially approved debt and insolvency counselling centres in Germany (response rate 39.7%). Logistic regressions were performed to explore factors associated with reports of increased smoking after onset of over-indebtedness. Results 63% of all respondents stated daily or occasional tobacco consumption. Almost one fifth reported an increase in smoking after becoming over-indebted. Females were less likely to report increased smoking than men (aOR 0.66, 95% CI 0.44-0.99) whereas respondents who had been over-indebted for more than 10 years were more likely to report increased smoking than those who had been over-indebted for less than five years (aOR 1.66; 95%-CI 1.00-2.76). The odds of increased smoking were also elevated among those who reported that their families and friends had withdrawn from them as a consequence of their over-indebtedness (aOR 1.82; 95%-CI 1.06-3.14). Conclusions The study identifies over-indebted individuals and particularly over-indebted men as a high-risk group of smokers. Low levels of social embeddedness/support were associated with a further increase in smoking after becoming over-indebted. Given recent increases of over-indebtedness, the findings highlight the need to develop appropriate public health policies

    It's not what you say but the way that you say it: an fMRI study of differential lexical and non-lexical prosodic pitch processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aims to identify the neural substrate involved in prosodic pitch processing. Functional magnetic resonance imaging was used to test the premise that prosody pitch processing is primarily subserved by the right cortical hemisphere.</p> <p>Two experimental paradigms were used, firstly pairs of spoken sentences, where the only variation was a single internal phrase pitch change, and secondly, a matched condition utilizing pitch changes within analogous tone-sequence phrases. This removed the potential confounder of lexical evaluation. fMRI images were obtained using these paradigms.</p> <p>Results</p> <p>Activation was significantly greater within the right frontal and temporal cortices during the tone-sequence stimuli relative to the sentence stimuli.</p> <p>Conclusion</p> <p>This study showed that pitch changes, stripped of lexical information, are mainly processed by the right cerebral hemisphere, whilst the processing of analogous, matched, lexical pitch change is preferentially left sided. These findings, showing hemispherical differentiation of processing based on stimulus complexity, are in accord with a 'task dependent' hypothesis of pitch processing.</p
    • …
    corecore